Description

vLLM is an inference and serving engine for large language models (LLMs). From versions 0.10.2 to before 0.11.1, a memory corruption vulnerability could lead to a crash (denial-of-service) and potentially remote code execution (RCE), exists in the Completions API endpoint. When processing user-supplied prompt embeddings, the endpoint loads serialized tensors using torch.load() without sufficient validation. Due to a change introduced in PyTorch 2.8.0, sparse tensor integrity checks are disabled by default. As a result, maliciously crafted tensors can bypass internal bounds checks and trigger an out-of-bounds memory write during the call to to_dense(). This memory corruption can crash vLLM and potentially lead to code execution on the server hosting vLLM. This issue has been patched in version 0.11.1.

INFO

Published Date :

2025-11-21T01:18:38.803Z

Last Modified :

2025-11-21T01:18:38.803Z

Source :

GitHub_M
AFFECTED PRODUCTS

The following products are affected by CVE-2025-62164 vulnerability.

No data.

CVSS Vulnerability Scoring System

Detailed values of each vector for above chart.
Attack Vector
Attack Complexity
Privileges Required
User Interaction
Scope
Confidentiality Impact
Integrity Impact
Availability Impact