Description

vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs. Versions starting from 0.8.0 and prior to 0.8.5 are affected by a critical performance vulnerability in the input preprocessing logic of the multimodal tokenizer. The code dynamically replaces placeholder tokens (e.g., <|audio_|>, <|image_|>) with repeated tokens based on precomputed lengths. Due to ​​inefficient list concatenation operations​​, the algorithm exhibits ​​quadratic time complexity (O(n²))​​, allowing malicious actors to trigger resource exhaustion via specially crafted inputs. This issue has been patched in version 0.8.5.

INFO

Published Date :

2025-04-30T00:24:53.750Z

Last Modified :

2025-04-30T00:24:53.750Z

Source :

GitHub_M
AFFECTED PRODUCTS

The following products are affected by CVE-2025-46560 vulnerability.

No data.

CVSS Vulnerability Scoring System

Detailed values of each vector for above chart.
Attack Vector
Attack Complexity
Privileges Required
User Interaction
Scope
Confidentiality Impact
Integrity Impact
Availability Impact